IAT | Chapel of Reconciliation | reitermann/sassenroth architekten

The play of contrasting materiality and permeability also create a space that differs from its traditional counterparts. The ambulatory can be seen as a “substitute for the arcaded or colonnaded side aisles of a conventional church. Yet unlike side aisles, it yields nothing of the interior of the nave or sanctuary for the visitor…”1 The chapel also has an absence of both the symmetry and dominant central axis that you find in a traditional Christian church.2 On the other hand, the ambulatory could also be seen as a cloister, but unlike the cloister which typically directs your view inward, this space directs your view outward to the death strip, a not-so-subtle reminder of the history of the place. By constructing the heavy wall on the interior and the lightweight screen on the exterior, the typical programming of spiritual space has been removed in favor of a spatial construct that embeds qualities of the past in the present, adding another layer to the palimpsest of the “no-man’s land.”


Notes

This is an excerpt from Chapter 10 of Introducing Architectural Tectonics.

Drawing | © Chad Schwartz | Comparison to a traditional church.

1 Adam Sharr, “The Sedimentation of Memory,” The Journal of Architecture 15, no. 4 (2010): 505.

2 Ronald Rael, Earth Architecture (New York: Princeton Architectural Press, 2009), 46.

IAT | Porciúncula La Milagrosa Chapel | Daniel Bonilla Arquitectos

The tectonic enclosure of Porciúncula La Milagrosa Chapel can be shifted back over the entry courtyard to the east all the way to the stone wall holding the chapel bell. This transformation, first, allows the nave to double in capacity. Second, the movement opens the sanctuary to the north towards the forest and to the south towards the open meadow. And third, the shifting pulls the higher roof plane out from above the solid lower plane (which does not transmit light), allowing light to filter into the space from above.

This flexible space allows for three primary configurations. With the volume closed, a small, intimate ceremony or service can be held with about 30 people. With the volume open, larger events can be held in the chapel – up to about 60 people – while also allowing the event to better connect to the lush natural environment. However, a third configuration exists for more substantial events. The entire spatial construct rotates to a north/south alignment with the opening in the volume. In this configuration, the altar moves to the center of the nave, facing south, and the congregation moves to the terraced grassy meadow, which is ideal for seating large crowds.


Notes

This is an excerpt from Chapter 11 of Introducing Architectural Tectonics.

Drawing | © Chad Schwartz | Transforming states.

IAT | METI Handmade School | Anna Heringer and Eike Roswag

The design solution may not be replicable in other parts of the Islamic world, as local conditions vary, but the approach – which allows new design solutions to emerge from an in-depth knowledge of the local context and ways of building – clearly provides a fresh and hopeful model for sustainable building globally.1

Although mud walled buildings are widely seen as inferior by the local people because they tend to indicate a more impoverished situation, Heringer and Roswag persuaded the client to explore the use of mud construction not only to save money on the project, but to develop a more sustainable and economically responsible model for future building in the community. This new building strategy would be “based on two types of energy: muscles and sun, resources that are available everywhere…”2 The process that was developed inserts sustainable local resources and new construction techniques into the vernacular building process. It is, therefore, deeply contextual in its relationship to utilizing resources, but it also seeks to improve the context rather than perpetuating less-than-ideal practices which have, over time, become routine.


Notes

This is an excerpt from Chapter 13 of Introducing Architectural Tectonics.

Photograph | Courtesy of Kurt Hoerbst | METI Handmade School with students playing.

1 Pamela Johnston, ed. Intervention Architecture: Building for Change (London: I. B. Tauris & Co Ltd, 2007), 148.

2 “Anna Heringer: Desi, Rudrapur, Bangladesh, 2007-08 and Meti, Rudrapur, Bangladesh, 2005,” Lotus International, no. 140 (2009): 9.

IAT | Brain Studio | Olson Kundig Architects

At several points in the Brain Studio, the folded steel loft intersects with the concrete perimeter wall, helping to both engage in a dialogue between the two elements and to project some of the interior conditions on to the exterior of the building. The first intersection occurs at the entry door. Directly above the door is a canopy formed from a single sheet of steel. This steel is an extension of the floor of the loft, penetrating through a slot in the concrete wall above the door. This element promotes the notion of a continuous folded plane of steel forming the loft, while also serving a functional role at the entry. In a similar fashion, the landing of the folded steel stair projects through the slot window. This finger of steel cuts through the wall and defines the bottom of the slice in the protective concrete wrapper of the studio. A third example of intersection occurs with the loft’s railing. Although the original sketches show a railing composed of steel folded up from the floor, the final scheme utilizes a steel pipe as a top rail. The pipe runs from exterior wall to exterior wall, projecting through the concrete to the exterior of the building, and serving as an exaggerated joint.


Notes

This is an excerpt from Chapter 14 of Introducing Architectural Tectonics. The chapter was co-authored by my former student Suzanne Abell.

Drawing | © Chad Schwartz | The manipulation of the loft.

IAT | Chapel del Retiro | Undurraga Devés Arquitectos

In the Chapel del Retiro, the typically stereotomic mass of the building is vaulted into the air on foundation blocks. Mass is dematerialized and disconnected. The floating concrete walls create an unsettled perception of how the structure is supported. Undurraga exaggerated the effect by extending the concrete walls beyond their supports, creating a cantilever condition that hovers above the ground.

The effect of floating is also pronounced on the interior of the building where no structural support is visible. Attached to the inside face of the concrete frame, a steel frame supports the installation of the wood cladding – a composition of recycled railroad ties. This cladding constricts the view out and conceals the concrete construction. A similar condition occurs at the roof. A narrow skylight runs around the entire perimeter of the chapel’s ceiling. The roof’s structure – a series of lightweight trusses – is concealed above, giving the effect of a floating ceiling in the space. The progressive dematerialization of these heavy elements is the primary tectonic – or atectonic in this case – expression of the chapel.


Notes

This is an excerpt from Chapter 15 of Introducing Architectural Tectonics.

Drawing | © Chad Schwartz | Floating wall section.

IAT | Lanxi Curtilage | Archi-Union

Building on a theme of abstracted nature, the patterning of the masonry of Lanxi Curtilage is derived from water. Disrupting the surface of water creates a pattern of ripples that roll across the surface. Archi-Union captured images of ripples in water and then developed “an algorithm that mimicked the transient behavior of water, which could be frozen in time allowing a literal architectural expression of its transient behavior.”1 After the translation of the imagery, the process continued with the introduction of materiality; the program merged the water patterning with the physical realities of the masonry, creating a staggered joint pattern that plays with light, shadow, and transparency.2

The cladding system is reflective of Semper’s ideas of the translation of cloth into more durable materials. Here, the masonry is treated as a fabric inspired by the movement of water. The material is ‘draped’ across masonry piers to not only enclose space, but to bring to it its character and essence. Masonry is at once a stable structural core (Semper’s original framework) and a flowing cladding system that dramatizes the structure.


Notes

This is an excerpt from Chapter 16 of Introducing Architectural Tectonics.

Drawing | Courtesy of Archi-Union.

1 Quotation taken from a project narrative provided by Archi-Union.

2 Taken from a project narrative provided by Archi-Union.

IAT | Punta della Dogana | Tadao Ando

The Punta della Dogana project required an intensive survey of the existing building, one that examined not just what the building was today, but what it was historically. After all, in order for the building to be returned to its original state, when that point was and what it included had to be determined. Much of the historic building – such as the roof trusses and the brickwork – was painstakingly disassembled, restored, and reassembled. At many points, however, the scars left by the process of removal and reconstruction were retained. These blemishes allow the layers of history to maintain a presence in the museum and serve as a palimpsest of the history of the place. Throughout the working process existed the challenge of balancing Ando’s precision design work within this wildly imperfect existing environment where “walls bulged, floor levels were never uniform and no two doorways or rooms were ever the same size.1


Notes

This is an excerpt from Chapter 17 of Introducing Architectural Tectonics.

Drawing | © Chad Schwartz

1 Ugo De Berti, “Punta Della Dogana: Work on Site,” in Tadao Ando for Franҫois Pinault: From Ile Seguin to Punta Della Dogana, ed. Francesco Dal Co (Milan, Italy: Mondadori Electra S.p.A., 2009), 156.

IAT | Museum of Roman Art | Rafael Moneo

Preserving the ruins below the building proved challenging for the design team. It was determined that a long span system would not work as the massive foundations required would do significant damage to the existing structures. Instead, small foundations were laced into the ruins at optimal points creating a system of arches that are less regular that those in the galleries above. These subtle structural shifts allowed the building to touch the ground gently in and amongst the remains. “For this reason Roman systems of construction have been literally adopted, entrusting to them, and not to molds and orders, the satisfaction of the desire to be near the Roman world which is clearly the basis of this project.”1 In essence, the brick used in the walls does not compete with the ruins for prominence; it complements them.


Notes

This is an excerpt from Chapter 18 of Introducing Architectural Tectonics.

Drawing | © Chad Schwartz

1 Rafael Moneo as cited in “National Museum of Roman Art Merida,” ed. Ministry of Culture General Directorate of Fine Arts and Archives Directorate of State Museums (Madrid: I.G. Saljen, S.A., 1991), 72.

IAT | Bruder Klaus Field Chapel | Peter Zumthor

The concrete mass of Bruder Klaus can be characterized as the building of a mound, referring back to primitive construction methods.1 After finishing the formwork, the concrete was laid in twenty-four layers or lifts, each a separate pour. One lift was poured each day for twenty-four straight days, each with an approximate height of 50 centimeters [19.7 inches]. The team doing the concrete work was composed of friends and family of the client working under the leadership of several skilled craftsmen.

The technique used for this concrete work is called rammed concrete and is similar to the process used to create rammed earth structures. It results in a final product that reveals its layered nature. The striations in the concrete reflect the earth’s composition and highlight the process of construction – the individual pours made by the building team. The resulting texture is not only critical to the overall quality of the project, but a distinct departure from the texture left on the inside of the space by the log formwork.


Notes

This is an excerpt from Chapter 19 of Introducing Architectural Tectonics.

Drawing: © Chad Schwartz

1 Jerneja Acanski Veber, “Sveto V Architekturi = the Sacred in Architecture,” Piranesi 20, no. 31 (2012): 40.

IAT | Casa Tóló | Álvaro Leite Siza

Casa Tóló sits on a 1000 square meter [10,764 square foot] site with a very particular set of characteristics: very long and narrow, relatively steeply sloping, facing south, and with a spectacular view of the surrounding environment. Its primary entrance sits at the top of the hill where a road allows access to the site via car. On approach from this point, you are greeted with a concrete slab and a stair descending into the earth; no building is visible. The descent you are asked to make as a visitor is an “act of faith.”1 You terrace down through a series of concrete modules, encountering program spaces in sequence, one at a time. At the bottom of the hill, a pedestrian path allows an alternative means of access to the site. Between these two points sits Casa Tóló. It is as much a staircase connecting the two points of access as it is a residential structure. Much like the drawings of M. C. Escher, the building is a game of stairs.


Notes

This is an excerpt from Chapter 20 of Introducing Architectural Tectonics.

Photograph: The upper entrance of Casa Tóló. By Fernando Guerra, FG+SG, courtesy of Álvaro Leite Siza

1 Clifford A. Pearson, “In Northern Portugal, Alvaro Leite Siza Vieira Cascades Casa Tolo Down a Steep Slope through Terraced Gardens,” Architectural Record 194, no. 4 (2006): 129.